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The level set method for multiphase compressible flows is simple to implement,
especially in the presence of topological changes. However, this method was shown
to suffer from large spurious oscillations. A new Ghost Fluid Method (GFM) was
developed to remove these spurious oscillations by minimizing the numerical smear-
ing in the entropy field with the help of an Isobaric Fix technique. The GFM was
designed for traditional contact discontinuities where the interface moves with the
fluid velocity only. In this paper, the GFM is extended to treat multimaterial interfaces
where the interface velocity includes a regression rate due to the presence of chemi-
cal reactions converting one material into another. Specifically, interface models for
deflagration and detonation discontinuities are considered. The resulting numerical
method is robust and easy to implement, 1999 Academic Press

1. INTRODUCTION

In [19], the authors applied the level set method to the multiphase compressible
The level set function was used as an indicator function and each grid point was
ignated as one fluid or the other in order to choose the appropriate equation of :
Then the numerical fluxes were formed and differenced in the usual manner; see,
[24]. In [14], it was shown that this technique produced large spurious oscillations in
pressure and velocity fields. This problem was rectified in [12, 6, 5] with schemes
involved explicit treatment of the appropriate boundary conditions at the interface.
a consequence, these schemes are intricate in one dimension and can only be ex
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to multiple dimensions with ill-advised dimensional splitting in time. In addition, multi:
level time integrators, such as Runge—Kutta methods, are difficult to implement for th
schemes.

The Ghost Fluid Method GFM [7] avoids the oscillations at multimaterial interface
without explicitly applying the interface boundary conditions. Instead, the (GFM) creat
an artificial fluid whichimplicitly captures the boundary conditions at the interface. In th
flavor of the level set method whidtmplicitly captures the location of the interface, the GFM
implicitly captures the boundary conditions at the interface. Since the boundary conditi
areimplicitly captured by the construction of a ghost fluid, the overall scheme becomes e
to implement in multidimensions without time splitting. In addition, Runge—Kutta methoc
are trivial to apply.

In [7], the GFM was implemented for contact discontinuities where the interface mov
at the fluid velocity only. In this case, the pressure and normal velocity of the ghost fluid
copied over from the real fluid in a node by node fashion while the entropy and tangen
velocities are defined with the use of a simple partial differential equation for one-sid
constant extrapolation in the normal direction. See [7] for details.

In this paper, the GFM is extended to multimaterial interfaces where the interface velo
includes a regression rate due to the presence of chemical reactions converting one ma
into another. Specifically, interface models for deflagration and detonation discontinuit
are considered similar to the work in [25, 18, 26, 27], where the authors extended the I
set method from [28] to interfaces that represent burning front discontinuities. In [28], t
authors keep a sharp interface location using the level set function, while smearing ou
surrounding flow variables, e.g., density. This numerical treatment is not acceptable
deflagration wave discontinuities since their propagation speed is evaluated as a functic
the exact unburnt gas conditions which are lost when the state variables are smeared o
[25, 18, 26, 27] the authors developed a new “in-cell reconstruction” technique that gi
a sharp representation of the states on each side of the interface as needed for deflag
discontinuities. Those authors used the level set methiaatiicitly capture the interface lo-
cation, while using the “in-cell reconstruction” techniqueiplicitly enforce the boundary
conditions at the interface. The resulting algorithm is more efficient than standard interf
tracking techniques, since the interface location is captured and not tracked. While the a
rithmdescribedin[25, 18, 26, 27] utilizes dimensional splitting in time, thisis nota necess
condition for the “in-cell reconstruction” technique [15]. However, the boundary conditiot
are stillexplicitlyapplied. In contrast, the GFihplicitly captures the boundary conditions
atthe interface by the construction of a ghost fluid. The resulting numerical method is eas
implement in multidimensions (without time splitting) and extends trivially to Runge—Kutt
methods.

2. EQUATIONS

2.1. Euler Equations

The basic equations for compressible flow are the Euler equations,

Ut + F(U)x + G(U)y + H(U). =0, 1)
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which can be written in detail as

) pou pv pw

ou pu2+ p puv puw

ov |+ puw +| pv24+p | + pow =0, 2
pw pUw pvw ,ow2 +p

EJo \(E+pu/, \E+pv), \(E+puw)/,

wheret is the time,(x, y, z) are the spatial coordinatess the densityV = (u, v, w) are
the velocitiesE is the total energy per unit volume, apds the pressure. The total energy
is the sum of the internal energy and the kinetic energy is
E— pey PUHV WY 3)
2

wheree is the internal energy per unit mass. The two-dimensional Euler equations
obtained by settingy =0, while the one-dimensional Euler equations are obtained
setting bothw =0 andw =0.

The pressure can be written as a function of density and internal ergeegyp(p, €).
The speed of sound is defined by

c= pp+?, (4)

wherep, and p. are partial derivatives of the pressure with respect to the density and
ternal energy, respectively.

Foranidealgap = pRT,whereR= R,/M isthe specific gas constant wii) ~ 8.31451
J/mol K the universal gas constant akidthe molecular weight of the gas. Also valid for
an ideal gas isp — ¢, = R, wherec;, is the specific heat at constant pressure@rid the
specific heat at constant volume. Gamma is the ratio of specific heats,/c,. For an
ideal gas, one can write

de=c,dT (5)

and assuming that, does not depend on temperature (calorically perfect gas), integrat
yields

e=¢e+¢,T, (6)
whereg, is not uniquely determined, and one could choose any valuedt® K (although
one needs to use caution when dealing with more than one material to be sure thatinteg

constants are consistent with the heat release in any chemical reactions that occur) |-
Note that

R
p=pRT=gp(e—%)=(y—l)p(e—%) (7)

is used later in the text.
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2.2. Level Set Equation

We use the level set equation
$+W-Vep=0 (8)

to keep track of the interface location as the zero levep.ofn this equationW is the
level set velocity of the interface. In genegaktarts out as the signed distance function, i
advected by solving Eqg. (8) using the methods in [11], and then is reinitialized using

¢t + S(do)(IVP| —1) =0 ©)

to keepg approximately equal to the distance function (i|& | = 1) near the interface
where we need additional information. We note that our method allows us to solve Eq.
independently of the Euler equations. That is, Eq. (8) can be solved directly using
method in [11], and the eigensystem for the Euler equations does not depgnsioce we
will be solving only one phase problem with any given eigensystem (see the later sectio
For more details on the level set function see [7, 19, 28].

3. THE GFM FOR A CONTACT DISCONTINUITY

The level set function is used to keep track of the interface. The zero level marks
location of the interface, while the positive values correspond to one fluid and the nega
values correspond to the other fluid. Each fluid satisfies the Euler equations as describ
the last section with different equations of state for each fluid. Based on the work in [1
the discretization of the level set function can be done independently of the two sets of E
equations. Besides discretizing Eqg. (8) one needs to discretize two sets of Euler equat
This is done with the help of ghost cells.

Any level set function defines two separate domains for the two separate fluids; i.e., €
point corresponds to one fluid or the other. Ghost cells are defined at every point in
computational domain so that each grid point contains the mass, momentum, and en
for the real fluid that exists at that point (according to the sign of the level set function) a
a ghost mass, momentum, and energy for the other fluid that does not really exist at that
point (the fluid from the other side of the interface). Once the ghost cells are defined,
can use standard one-phase methods (e.g., see [24]) to update the Euler equations at
grid point for both fluids. Then the level set function is advanced to the next time step,
the sign of the level set function is used to determine which of the two sets of updated fl
values should be used as the real fluid values at each grid point.

Consider a general time integrator for the Euler equations. In general, one constri
right hand sides of the ordinary differential equations for both fluids based on the meth
in [24]; then the level set function is advanced to the next time level and the sign of
level set function determines which of the two right hand sides to use in the time upd
for the Euler equations. This can be done for every step and every combination of stef
a multistep method.

Last, we note that only a band of three to five ghost cells on each side of the interfac
actually needed by the computational method depending on the stencil and movemel
the interface. One can optimize the code accordingly.
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3.1. Defining Values at the Ghost Cells

In [7], the GFM was implemented for a contact discontinuity in the Euler equations
was apparent that the pressure and normal velocity were continuous, while the tange
velocity was continuous in the case of a no-slip boundary condition at the interface
discontinuous for a shear wave. It was also apparent that the entropy was discontinuc

For variables that are continuous across the interface, the ghost fluid values are
be equal to the real fluid values at each grid point. Since these variables are contini
this node by node population will implicitly capture the correct interface values of t
continuous variables. This is the key mechanism in coupling the two distinct sets of E
equations.

Note that the discontinuous variables are governed by a linearly degenerate eigen\
Thus, they move with the speed of the interface and information in these variables sh
not cross the interface. Moreover, these discontinuous variables should not be errone
coupled or forced to be continuous across the interface, as is usually the case for |
conventional numerical methods which produce spurious numerical dissipation at dis
tinuities, e.g., shock capturing methods. In order to avoid the numerical smearing of tl
variables, one-sided constant extrapolation is used to populate the values in the ghost
Note that the work in [8] on the Isobaric Fix shows that one does not have to deal dire
with the entropy. There are a few options for the choice of the variable used in extrapole
ranging from density to temperature.

The extrapolation of the discontinuous variables is carried out in the following fashi
Using the level set function, the unit normal is defined at every grid point as

Vo

= 2 = (Nq, Ny, N3), (10)

whereN always points from the fluid withh < 0 into the fluid withg > 0. Then the advection
equation

I,+N-VI =0 (11)

is solved in fictitious timer for each variabld that needs to be extrapolated across th
interface in one direction or the other. The™sign is used to populate the ghost fluid in
the region where > 0 with the values of from the region where < 0, while the real
fluid values ofl are kept fixed in the region whege< 0. Likewise, the “-” sign is used
to populate the ghost fluid in the region where: 0 with the values of from the region
whereg > 0, while the real fluid values df are kept fixed in the region whege> 0. This
equation only needs to be solved for a few steps in fictitious time in order to populate a
band of approximately three to five ghost cells needed for the numerical method.

Note that the above procedure does not apply an isobaric fix to the cells in the real
which borders the interface. In order to apply the isobaric fix, keep the real fluid value
| fixed in the region where¢ < —e when using the " sign in Eq. (11), and keep the real
fluid values ofl fixed in the region where > ¢ when using the =" sign in Eq. (11). Since
¢ is an approximate distance function, choeg®e be the thickness of the band in which
the isobaric fix is to be applied. We use- 1.5Ax.

When the need arises to extrapolate the tangential velocity, first extrapolate the e
velocity fied,V = (u, v, w). Then, at every cell in the ghost region there are two sepatr:
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velocity fields, one from the real fluid and one from the extrapolated fluid. For each \
locity field, the normal component of velocityy =V - N, is put into a three component
vector,Vy N, and then a basis free projection method (see, e.g., [9]) is used to define
two dimensional velocity field in the tangent plane by another three component vec
V — V N. Finally, the normal component of velocityy N, from the real fluid is added to
the tangential component of velocity,— Vy N, from the extrapolated fluid to obtain the
ghost fluid velocity that occupies the ghost cell.

Once the ghost fluid values are defined as outlined above, they can be use to asse
the conserved variables for the ghost fluid.

4. EXTENDING THE GHOST FLUID METHOD

For a simple contact discontinuity that moves with the speed of the fluid only, we we
able to separate the variables into two sets based on their continuity at the interface.
continuous variables were copied into the ghost fluid in a node by node fashion in or
to capture the correct interface values. The discontinuous variables were extrapolated
one-sided fashion to avoid errors due to numerical dissipation. In order to apply this i
to a general interface moving at speledn the normal direction, one needs to determine
the continuous variables for this general interface problem.

Conservation of mass, momentum, and energy can be applied to an interface in o
to abstract continuous variables. One can place a flux on the interface oriented tan
to the interface so that material that passes through this flux passes through the inter
This flux moves with spee® (the interface speed) in the normal direction, and the mas
momentum, and energy which flow into this flux from one side of the interface must flc
back out the other side of the interface. That is, the mass, momentum, and energy flL
this moving reference frame are continuous variables. Otherwise, there would be a m
momentum, or energy sink at the interface and conservation would be violated. We del
the mass, momentum, and energy flux in this moving reference frafg &y, andFg,
respectively. The statement that these variables are continuous is essentially equivale
the Rankine—Hugoniot jump conditions at an interface moving with spegdthe normal
direction. In[25, 18, 26, 27] the Rankine—Hugoniot jump conditions were explicitly applie
to the interface. Instead, the Ghost Fluid Method uses the factHhdt,,, and Fg are
continuous to define a ghost fluid that captures the interface values of these variables.
is, the Rankine—Hugoniot jump conditions are implicitly captured, resulting in a meth
that is robust and easy to implement.

Remark. NumericallyF,, F,y, andFg may not be continuous. This could occur from
initial data or wave interactions. However, sirfeg F,v, andFe are treated as though they
were continuous in the numerical method, numerical dissipation smooths them out. In f
this numerical dissipation helps to guarantee the correct numerical solution.

Remark. The level set function is designed to represent interfaces where the interf:
crosses material at most once due to an entropy condition [21, 23]. Simple contact disc
nuities that move with the local material velocity never cross over material. If one matel
is being converted into another, then the interface may include a regression rate for
conversion. If the regression rate for this conversion of one material into another is ba
on some sort of chemical reaction, then the interface can pass over a material exactly c
changing it into another material. The same chemical reaction cannot occur to a matt
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more than once, and the reverse reaction is usually not physical due to an entropy conc
However, in the case of reversible chemical reactions, the level set may pass over a me
in one direction (the reaction) and then pass back over the same material in the opg
direction (the reverse reaction).

Remark. Shocks may be interpreted as the conversion of an uncompressed ma
into a compressed material. In this caBeis the shock speed and the GFM could be use
to follow a lead shock, but since shocks can pass over a material more than once i
same direction, all subsequent shocks must be captured or modeled by separate le
functions. A simple example of the GFM for non-reactive shock waves is presented
later section, although this approach will be examined in detail in a future paper [2].

Remark. In the general casé&,,y andFg will include general mechanical stress term:
on the interface, e.g., viscosity, surface tension, and material models. In ad#iiovill
include general thermal stress terms on the interface, e.g., thermal conductivity. Ge
mechanical and thermal stress terms are not considered in this paper although press
considered as a mechanical stress.

To defineF,, F,v, andFg, we write the equations in conservation form for mass, ma
mentum, and energy. The fluxes for these variables are then rewritten in the reference
of a flux which is tangent to the interface by simply taking the dot product with the norn
direction,

2 0
(F(U),G(U),HWU)) -N=| pVT [Wn+ | pNT [, (12)
E+p 0

whereVy = V - N is the local fluid velocity normal to the interface and the supersdript
designates the transpose. Then the measurements are taken in the moving reference
(speedD) to get

P 0
p(VT — DNT) (V\w—=D)+ [ pNT |, (13)

pe+ ,O\V—ZDN\Z + p O

from which we define
F, =p(Vn — D) (14)
Fov = p(VT — DNT)(Vy — D) + pN' (15)
V — DNJ?

Fe = (pe+ % + p) (Vn — D) (16)

as continuous variables for use in the GFM. That is, we will define the ghost fluid in an
by node fashion by solving the system of equations

G R
Fo=F) (17)
Ff\, = F;*V (18)

FE =FF (19)
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at each grid point. Note that the superscifipstands for a real fluid value at a grid point,
while the superscrip® stands for a ghost fluid value at a grid point. Silgg FF;,, F&, N,
andD are known at each grid point, these can be substituted into Egs. (17), (18), and (
leavingp®, V€, p®, ande® undetermined. Since the ghost fluid is supposed to represent t
real fluid on the other side of the interface, we use that fluid’s equation of state as our s
equation. Thus, populating the ghost nodes requires the solution of six algebraic equat
with six unknowns at each grid point in a band about the interface. For many applicatio
this is rather trivial compared to applying the Rankine—Hugoniot jump conditions explicit
to the interface.

5. DEFINING THE INTERFACE SPEED D

The interface speed is usually a function of the surrounding materials. For example, in
case of a simple contact discontinuiy,can be defined as the continuous normal velocit
of the two materials at the interface.

Inorderto update Eq. (8) for the level set function, one needsto define the level set velo
W, at every grid point. In the level set capturing framewdtk|js defined everywhere by a
function which is continuous in the normal direction and has an interface value that mo
the interface at the correct interface velocity. This global definitiolVofan be used to
find D for use in solving Egs. (17), (18), and (19). In a node by node fashica,W - N is
defined as the velocity of the interface in the normal direction, capturing the correct va
of D at the interface.

In many cased) is given and one can defilf¢ = DN. Note that starting withV, defining
D =W - N, and then definingV = DN result inW =W NTN, where the superscrigt
represents the transpose. While this equation is obviously falseybatidW NN behave
the same with regard to the level set method. That is,

G +W-Vop=0 (20)
and
¢+ (WNTN) - V¢ =0 (21)

will be analytically equivalent, although there may be numerical differences.

5.1. A Simple Contact Discontinuity

Consider the case of a simple contact discontinuity where the interface moves with
local fluid velocity, i.e.W = V. ThenD = V} is the component of the real fluid velocity
normal to the interface at each point. Equation (17) becomes

P (VN — W) =0, (22)

implying thatV$ = V,}. Thatis, the normal component of the ghost fluid velocity should b
equal to the normal component of the real fluid velocity at each point. Then Eq. (18) becot
p® = pR, implying that the pressure of the ghost fluid should be equal to the pressure of
real fluid at each point. Equation (19) is then trivially satisfied, leaving a degree of freedc
As discussed in [7], the entropy should be extrapolated in the normal direction along w
an Isobaric Fix [8] to minimize “overheating.” In addition, the tangential velocities ar
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extrapolated for a shear wave or copied over in a node by node fashion to enforce conti
of the tangential velocities for a “no-slip” boundary condition.

5.2. Defining the Level Set Velociy

One issue that needs to be addressed in the level set formulation is the definition c
level set velocityV for use in Eqg. (8). In the case of a simple contact discontinWty: V
is just the local fluid velocity. In more general cases, the interface speed may be a fun
of the variables on both sides of the interface and a general method for constit¥cting
needed.

Consider an interface separating two materials with states represent¢d mn one
side of the interface and® on the other side of the interface. In general, the velocity
the interface can be defined by = W (U, U'?) where the int” subscript represents a
variable that has been interpolated to the interface in a one-sided fashion. Geki¢iialy,
continuous function and application8f = W (U™, U®) in a node by node fashion will
capture the correct value B at the interface.

In order to apphyv = W(U®, UP) in a node by node fashion, one needs valudsdf
andU®@ at every nodeU® can be extended across the interface into the region occup
by U?, andU® can be extended across the interface into the region occupi&ti*hy
Then, every grid point in a band about the interface has values olétandU® to use
when definingV = W(U®, U®@). For first order accuracy, one can take a few time ste|
in fictitious timert for the advection equation,

I+ N-VI =0, (23)

for each variablé that needs to be extrapolated. The"sign is chosen in the appropriate
way to extend the componentsdf? or of U®? .

In general, one only needs extension for a thin band consisting of about three to five
cells near the interface. Once the velocity is computed near the interface, it can be exte
to cover the entire domain using Eg. (23) witrequal to each component @f and the
appropriate choices of thet” sign. Instead of extendingv throughout the domain, one
could use fast local level set methods in a narrow band about the interface; see, e.g., [1
the references therein.

In some cased) is preferable tdV and one can usB = D(UY, U'?) in a node by
node fashion and then constrit= DN.

6. ANOTE ON CONSERVATION

The GFM decomposes the computational domain into separate regions for each
and utilizes a standard conservative flux differencing scheme for each separate fluid.
procedure creates nonunique fluxes at the interfaces separating different fluids and
to a formal lack of discrete conservation on a set of measure zero near the interfac
addition, there is a lack of conservation due to the advection of the level set function sin
to that in the area loss problem seen in incompressible flow calculations [28]. In [7], tF
conservation errors were discussed and numerical examples were provided to illus
convergence to the correct weak solution for a variety of examples. Since the leve
function is advected with the desired velocity of the discontinuity, one can still use 1
method to treat general discontinuities such as shocks. That is, the interface profile i
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smeared out and one does not have to rely on exact conservation to obtain the co
propagation speed for the discontinuity. This methodology is common in front tracki
schemes; for example, [22] uses a nonconservative method for updating the locatio
the discontinuity and then formally corrects the conservation errors with a post-process
procedure [4]. It seems likely that a similar post-processing procedure could be develo
to make the GFM fully conservative as well.

7. EXAMPLES

Consider an interface separating two materials with states representé€tl by one side
of the interface ant)® on the other side of the interface. Equation (23) is used to exter
U®D andU® so that both functions are defined on a five grid cell band near the interfas
ThenD = (U®, U@) is applied in a node by node fashion throughout the five grid cell bar
andW = DN is defined within the band. The component$\btan be extended throughout
the domain using Eq. (23). However, in the sense of a local level set method, one does
need to extendlV and we seWW = 0 outside our narrow band as opposed to extending it.

We experienced a smallincrease in computational overhead associated with the nume
treatment of the scalar level set equation and the equations for reinitialization and gf
cell population. Theoretically, these algorithms can be performed on a lower dimensic
subset of the mesh; see, for example, [1] and the references therein. While our code:
not use narrow band methods for the standard level set equations, we did apply all g
cell related algorithms in a thin band about the interface, increasing the computational
by only a few percentage points over a standard one phase calculation in most cases.

Note that all our numerical examples use third order TVD Runge—Kutta and third orc
ENO-LLF [24].

7.1. Non-reacting Shocks

Consider the representation of a lead shock by a level set function where the posi
values of¢ correspond to the unshocked material and the negative valyesafespond
to the shocked material. Then the normid], points from the shocked material into the
unshocked material.

In one spatial dimension, the normal velocity is defined/gs=V - N and Eqgs. (14),
(15), and (16) become

F, = p(Vn — D) (24)
F,v = p(u—DN")(Vy — D) + pNT (25)
Fe= (pe+ LZDI\”Z + p) (VN — D), (26)
where it is useful to define
Fovy =NFv = p(Vy — D)’ + p (27)

and to rewrite Eq. (26) as

p(Vn — D)

Fe = (,Oe—i- >

+ p) (Vn — D), (28)
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FIG. 1. Single shock (shock capturing scheme—ENO).

using the factthatl = +1in one dimesnion. Then Egs. (17), (18), and (19) can be written

p®(V§ — D) =FF} (29)
p®(V$ —D)*+ p® =FR, (30)
G(vS — D)2
(pGeG PN ( N2 ) + pG) (V§ = D) =F§, 31)

whereF R, FR, . FE, andD can be evaluated at each grid point. Adding the equation
state for the ghost fluid as

p® = (y® — 1)p%° (32)
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den vel
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FIG. 2. Single shock (ghost fluid method).

yields four equations for four unknowns which can be arranged into a quadra¥ ferD,
where

GER 6FR \® 20,6~ DFF
V,\(l;_ 14 PV N + < 4 PVN > _ (V ) E (33)

" (/S +DFR C+DFR) G+ DFR

expresses the two solutions. Choosing one of these two solutiongXallows one to
obtainp® from Eq. (29),p® from Eq. (30), an@® from Eq. (32). In additiony® = V$N.

In order to choose the correct solution from Eq. (33), one has to know whether or |
the ghost fluid is an unshocked fluid or a shocked fluid. Node by node, the real val
of the unshocked fluid are used to create a shocked ghost fluid to help in the discret
tion of the shocked real fluid. Likewise, the real values of the shocked fluid are usec
create an unshocked ghost fluid to help in the discretization of the unshocked real fl
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den vel

temp

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIG. 3. Shock tube (shock capturing scheme—ENO)—100 grid points.

If the ghost fluid is a shocked fluid, thdd should be subsonic relative to the flow, i.e.
VE —c® <D < VS +cC or |[V$ — D| <cC. On the other hand, if the ghost fluid is an
unshocked fluid, thei should be supersonic relative to the flow, 1|8, — D| > cC.
Therefore, one should choose th&™sign in Eqg. (33) to give the minimum value of
[V — D| when constructing a shocked ghost fluid and the maximum valiépf- D|
when constructing an unshocked ghost fluid.

For a simple non-reacting shock, the shock spBedan be defined directly from the
mass balance equation as

pOyYD _ @y

D= oD — p®? (34)

in a node by node fashion. However, this simple definition of the shock speed 1
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den vel

temp

0 02 04 06 08 1 ) 02 04 06 08 1
FIG. 4. Shock tube (ghost fluid method)—2100 grid points.
erroneously giveD =0 in the case of a standard shock tube problem where both flui

are initially at rest. A somewhat better estimate of the shock speed can be derivec
combining Eq. (34) with the momentum balance equation to get

@ (UDY? 4+ pD — H@ (@) — p@
D:W (uh)” + p — p®(u®)* — p )

pD — p@ ’

where the shock speed is now dependent on the pressure as well. Note that Egs. (34
(35) are approximations fob. Clearly, these approximations will lead to nonphysical
values ofD in certain situations. In fac) could be infinite or imaginary. A more robust,
but still approximate, value foD can be obtained by evaluatiig = Vy + ¢ with the
Roe average o) andU®, since this is the exact shock speed for an isolated shoc
wave and never becomes ill-defined. Of course, the best definition of the shock speed
be derived by solving the Riemann problem for the sta€s and U@, although this
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FIG.5. Shock tube (ghost fluid method)—400 grid points.

generally requires an iteration procedure. In fact, this approach will be followed in a fu
paper [2].

7.1.1. XxamPLE 1. Inthis example, we consider a single shock wave moving to the rig
taken from [27]. We us a 1 mdomain with 100 grid points and the interface located
x =0.5 m, which is exactly midway between the 50th and 51st grid points. We ust.4
and M = 0.040 kg/mol for both gases. Initially, we set=2.124 kg/n¥, u=89.981 m/s,
and p = 148,407.3 Pa on the left, apd= 1.58317 kg/mi, u =0 m/s, andp = 98,066.5 Pa
on the right.

Figure 1 shows the solution &= 0.001 s with a standard shock capturing schemnr
specifically third order ENO-LLF. Since the shock capturing scheme employs nume
differencing across the discontinuous shock wave, a large amount of numerical dissip
smears out the discontinuous shock structure. The shock capturing method does notic
the discontinuous initial data as a shock wave, but instead interprets it as a Riemann pre
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FIG. 6. Overdriven detonation.

and attempts to break it up into distinct waves one of which is a smeared out shock wi
The other waves are represented by the glitch keaf.6 in the density and temperature
contained in the linearly degenerate field and the small glitch xead.3 in all variables
contained in the other truly nonlinear fields. These glitches are traditionally referred to
start-up errors and tend to diminish in size as the grid is refined.

Figure 2 shows the numerical solution computed with Eq. (35) as the shock speed
the GFM. Note that the GFM avoids numerical dissipation at the interface and the rela
artifacts, i.e., start-up errors. The GFM can interpret the discontinuous initial data as a st
wave and does not need to modify the shock profile in order to capture it.

The exact solution is plotted as a solid line in both figures.

7.1.2. XAMPLE 2. Next, we set up a shock tube problem by changing the left state
Example 1 tgo = 3 kg/n?, u=0 m/s, andp = 2 x 10° Pa while still plotting the results at
t =0.001 s. The results with a standard shock capturing scheme are shown in Fig. 3
those with the GFM and Eq. (35) are shown in Fig. 4. Note that the shock wave in 1
GFM case trails by one grid point and that there is a small glitch on the left hand side
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x 10° press

FIG. 7. Overdriven detonation at= 0.00135 s.

the shock that disappears when the shock equilibrates later in time. These are first
numerical errors along the lines of the first order numerical smearing present in a sl
capturing method. A more resolved calculation will achieve a flat profile in a shorter tir
e.g., the same calculation with 400 grid points has the shock wave in the correct cell
no visible glitch, as can be seen in Fig. 5. The exact solution is plotted as a solid line i
three figures. For more details on the convergence and the location of discontinuities
the GFM, see [7].

7.2. Detonations

Strong detonations and Chapman-Jouguet detonations can be approximated as
ing shocks under the assumption that the reaction zone has negligible thickness. Le
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FIG. 8. Spatial history of the peak pressure.

unreacted material be represented by the positive valugsaofl the reacted material be
represented by the negative valuesgoso that the normallN, points from the reacted
material into the unreacted material.

Equations (29), (30), and (31) are still valid, while Eq. (32) becomes

p® = (y© — 1)p®(e® - €9), (36)

where one can no longer set=0 for both fluids. In detonations, the jump & across
the reaction front indicates the energy release in the chemical reaction. Equation |
becomes

2
VG - D= % + yGFst/N _ Z(VG - 1) F_E _ G (37)
" (v© + DFR vCe+DFR)  C+D \FR °)
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FIG. 9. Deflagration wave.

where one chooses the-" sign to give the minimum value g¥,$ — D| when constructing
a reacted ghost fluid and the maximum valug\§ — D| when constructing an unreactec
ghost fluid. Equation (35) is used for the detonation speedlthough one may wish to
consult a Riemann solver; e.g., see [29].

7.2.1. XaMPLE 3. In this example, a single overdriven detonation wave moving to t
rightis taken from [18]. We useeB m domain with 100 grid points and the interface locate
atx =4 m, which is exactly midway between the 50th and 51st grid points. We us& 27
in both gases, whilél =0.015 kg/mol in the unburnt gas ardd =0.018 kg/mol in the
burnt gas. Initially, we seb = 1.57861 kg/mi, u = 279982 m/s, andp = 7,707,520 Pa on
the left, ando = 0.601 kg/n?, u=0 m/s, andp =1 x 10° Pa on the right. In addition, we
havee, = %) J/kg in the unburnt gas are} =0 in the burnt gas. Figure 6 shows the
solution att =0.0005 s after it has moved from=4 m to aboutx =6.26 m at a speed of

about 4521 m/s. The exact solution is plotted as a solid line in the figure.
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FIG. 10. Deflagration interaction with a leftgoing shock.

7.2.2. XAMPLE 4. Next, we take the overdriven detonation from Example 3 with 20
grid cells (201 grid points) and start the detonatiox at0.175 m, which is between the
5th and 6th grid points. A solid wall boundary condition is enforced at0, creating
a rarefaction wave that will catch up with the overdriven detonation and weaken it tc
Chapman-Jouguet detonation as in [18]. The large circles in Fig. 7 show the pressure pr
att =0.00135 s. The solid line in Fig. 7 shows the same calculation with an increas
resolution of 800 grid cells (801 grid points), in which case the detonation wave stz
exactly between the 18th and 19th grid points. Comparison of these two graphs indic
reasonable behavior under grid refinement. Figure 8 shows a plot of the peak post-deton
pressure at each grid point for the 800 grid cell case. Note that the post-detonation pres
is approaching the Chapman-Jouguet pressure of 4,518,507 Pa.
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FIG. 11. Deflagration interaction with a rightgoing shock.

7.3. Deflagrations

For a deflagration, the unreacted material is represented by positive valgiesdfthe
reacted material is represented by negative valugssaf that the unit normal points from
the reacted material into the unreacted material. Equations (29), (30), and (31) are
along with Eqg. (36), where the jump & across the reaction front indicates the energ
release in the chemical reaction. Equation (37) is still valid; however, since a deflagra
is subsonic the+” sign is chosen to give the minimum value pt$ — D| for both the
reacted and the unreacted ghost fluids.

For a deflagration, the Riemann problem is not well posed unless the speed of the ¢
gration is given [13, 29]. Luckily, there is a large amount of literature on the G-equation
flame discontinuities. The G-equation was originally proposed in [17] and later discus
in [30]. The G-equation represents the flame front as a discontinuity in the same fas
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FIG. 12. Deflagration wave with a precursor shock wave—2100 grid cells.

as the level set method. Thus, one can consult the literature on the G-equation to ol
deflagration speeds for the GFM.

7.3.1. XamPLE 5. In this example, we consider a single deflagration wave moving 1
the right with the deflagration velocity taken from [13, 29] as

@\ 2
D=V2+ <3.00>< 10°° S ) (p ) , (38)

md )\ p@

where we have redimensionalized the problem. Note that the superscript “(2)” stands
an unburnt gas quantity. We use a 1.6 m domain with 100 grid points and the interf
located atx = 0.8 m which is exactly midway between the 50th and 51st grid points. W\
usey = 1.4 andM = 0.029 kg/mol in both gases. Initially, we spt=0.142168 kg/m,
u=-181018 m/s, andp=94,569.5 Pa on the left, and=1 kg/m®, u=0 m/s, and
p=1x 10° Pa on the right. In addition, we haeg= 2.0 x 1° J/kg in the unburnt gas and
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FIG. 13. Deflagration wave with a precursor shock wave—200 grid cells.

e, =0 in the burnt gas. Figure 9 shows the solutioh &t0.01 s after it has moved from
x=0.8 mto aboutk =1.1 m at a speed of about 30.0 m/s. The exact solution is plotted
a solid line in the figure.

7.3.2. XAMPLE 6. In this example, we compare our results for shock deflagrati
interactions with exact solutions from [20] using the deflagration velocity

2) 1 T(z) 1.721
D=V,§2)+18.5( P Q ( ) 2 (39)

101,000 P 298 K

where the superscript “(2)” stands for an unburnt gas quantity. \Weusmdomain with
400 grid points and the interface locatedkat 0.5 m. We usey = 1.4, M =.021 kg/mol,
ande, = 3.38 x 10° J/kg in the unburnt gas corresponding to a stoichiometric hydrogen
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FIG. 14. Deflagration wave with a precursor shock wave—400 grid cells.

mixture. We user = 1.17, M = 0.026 kg/mol, ands, =0 in the burnt gas. The burnt gas is
one the left of the interface and the unburnt gas is on the right of the interface.

The first case consists of a leftgoing shock starting 2t0.6 m with preshock states
of p =1.587 kg/n¥, u= 2832 m/s, andp = 249,900 Pa on the left, and postshock state:
of p=2.128 kg/n¥, u= 1399 m/s, andp= 378,200 Pa on the right. The burnt gas has
initial states ofp = 0.4289 kg/n3, u = 1948 m/s, andp = 244,800 Pa. The shock hits the
deflagration and the collision results in four waves shown in Fig. 10=a0.00065 s as
a shock, contact, deflagration, and rarefaction from left to right. All waves are captur
except the deflagration wave which is tracked with the level set function. The results ac
well with the exact solution, which is plotted as a solid line in the figure.

The second case consists of a rightgoing shock startixg-dt.4 m with postshock states
of p =0.3809 kg/nt, u=5551 m/s, andp = 241,100 Pa on the left, and preshock state:
of p =0.1859 kg/ni, u= —61.96 m/s, andp = 102,700 Pa on the right. The unburnt gas
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FIG. 15. Deflagration waves with precursor shock waves.

has initial states 0b =0.8672 kg/n¥, u=6.762 m/s, ando = 103,900 Pa. The shock hits
the deflagration and the collision results in four waves shown in Fig. 1+=&0006 s as
a shock, contact, deflagration, and shock from left to right. All waves are captured, ex
the deflagration wave, which is tracked with the level set function. The results agree !
with the exact solution, which is plotted as a solid line in the figure.

7.3.3. XAMPLE 7. Next, we take the deflagration from Example 5 and enforce a sc
wall boundary condition at = 0. Itis important to note that a reflection boundary conditio
is applied to the level set function as well. That is, we start withx — 0.024 m and after
applying the reflection boundary condition we hgve |x| — 0.024 m as initial data. This
initial data assumes that the entire domain is unburnt (the right state in Example 5), exce|
a small region near the solid wall which we assume to be burnt (the left state in Exampl

Due to the influence of the solid wall, we initially set the velocity of the burnt state
be identically zero (not- 181018 m/s). Since the solid wall prevents the deflagration froi
accelerating the burnt gas to the left, a shock wave forms to the right of the deflagra
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FIG. 16. Deflagration wave location (time vs space).

This shock wave pre-accelerates the unburnt gas to the right, so that the acceleration c
gas to the left by the deflagration wave is approximately canceled, resulting in a burnt
velocity near zero as forced by the solid wall.

The circles in Fig. 12 show the deflagration wave computed with 100 grid cells (101 g
points) at =0.002 s when itis located near= 0.5 m moving to the right at approximately
278 m/s. Note the captured shock wave nearl m. In Figs. 13 and 14 the same calculation
was carried out with 200 grid cells (201 grid points) and 400 grid cells (401 grid points
respectively. For the sake of comparison, a more refined calculation with 800 grid cells (
grid points) is plotted as a solid line in all three figures. These figures illustrate first orc
convergence in the location of the discontinuous deflagration wave and the captured sl
wave. In addition, note that the overheating errors in temperature and density at the
could be minimized with the Isobaric Fix [8].

An important technical detail concerns the treatment of the normal in the burnt reg
near the wall. Consider the 101 grid point case where there are initially three burnt po
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FIG. 17. Deflagration wave at=0.0022 s.

consisting of one ax =0, one to the right ok =0, and a solid wall boundary reflected
point just to the left ofk = 0. The normaN will be undefined ak =0 if standard central
differencing is used to compute it. Thus, one must be careful when compJtinigh a
standard central difference. In these cases we resort to one-sided differencing to cor
the normal. In this particular example, essentially equivalent results are obtained regar
of which direction we use to compute the one-sided difference. Inherently, this is a prok
with level sets in under-resolved regions since local extrema may occur near the
level. However, this is a problem only when the extrema are positioned exactly on a
node, which is unusual except for initial data. For our purposes, we address this prol
by assigning a normal in an arbitrary direction by choosing one-sided differencing ir
arbitrary direction.

7.3.4. ExampLE 8. Once again, we consider deflagration waves with velocities det
mined by Eq. 38. We use a 1.6 m domain with 801 grid points and a solid wall bounc
condition atx =0. Initially, ¢ = |[x — 0.078 mj — 0.003 m, where the three grid points at
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FIG. 18. Interface locations before merging—0.0008 s.

x =0.076 m,x =0.078 m, andx = 0.08 m designate a burnt gas with= 0.2082 kg/n?,
u=0 m/s, p=140,720 Pa, and, =0. The rest of the domain is an unburnt gas with
p=1kg/m, u=0m/s,p=1 x 10° Pa, andg, =2.0 x 10° J/kg. In both gases; = 1.4
andM = 0.029 kg/mol.

The solution consists of two deflagration waves moving outward fxea0.078 m (in
opposite directions). Since the burnt gas is confined between these deflagrations, it |
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FIG. 19. Interface locations after merging—0.001 s.



GHOST FLUID METHOD 421

density
100

=4

920

80

70

60

40

30

20

10 20 30 40 50 60 70 80 90 100

FIG. 20. Interface locations before merging—0.0008 s.

have a near zero velocity inducing shock waves in front of the deflagrations, as ca
seen in Fig. 15 at=0.000147 s, where the deflagrations are located reaf.043 and
x =0.113 and the shocks are located neas 0.01 andx = 0.146.

The leftgoing shock wave will reflect off the solid wall boundary, change direction, a
then intersect the leftgoing deflagration ngat 0.02 m, causing it to slow down (although
it eventually reaches the wall and burns out). The transmitted shock eventually catche
with the rightgoing deflagration near=0.175 m, causing it to accelerate to the right. Th
resulting transmitted shock will eventually overtake the lead rightgoing shock. Figure
shows a time history of the location of the deflagration waves and Fig. 17 shows the pre:
att =0.0022 s.

7.4. Multidimensions

In multidimensions, the normal velocity is definedy =V - N, Eq. 14 is still

Fp =p(Vn—D) (40)
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FIG. 21. Interface locations after merging—0.001 s.

and Eq. 27 is still

Fovy = NF,y = p(Vy — D)+ p (41)
while
Fov — Fou NT
Fov, = % =VT — VyNT (42)
o

is valid whenVy # D, i.e., except for the case of a contact discontinuity. The necesse
continuity of this expression implies the well known fact that tangential velocities a
continuous across shocks, detonations, and deflagrations. Note that tangential velocitie
not necessarily continuous across contact discontinuities.

Note that

IV — DN]2=|V|2—2DVy + D% = [V|2 = VZ + (Vy — D)2 (43)
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FIG. 22. Initial data—50 grid cells in each direction.

IVI> = Vi + V& + VZ,

45 50

(44)

whereVy, andVr, are the velocities in the tangent directioihsandT,, respectively. Com-
bining Egs. (43) and (44) yields

which can plugged into Eq. 16 to obtain

Fe = (,oe+

IV — DN|? = VZ + V£ + (Vy — D)?, (45)
VE + VE Vy — D)2
o( T12 T2)+/?( N2 ) +p)(VN—D) (46)

as a rewritten version of Eq. (16).

Defining

Fe —

Fo(VE+VE) p(Vy — D)?
— 3 et

+ p) Vn—=D)  (47)
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FIG. 23. Initial data—400 grid cells in each direction.

and using this equation along with Egs. (40) and (41) and the equation of state for the g
fluid

p® = (¥® —1p®(e® - €9) (48)

GER R 2 -
ve_p_ YTRN | rCFh V200 -0 (PR G g
§ (y® +DFR (v® +DFR e+ \FF )"

which is identical to Eq. (37) in every way, since the definitiorFefin multidimensions is
identical to the definition ofg in one dimension.

To summarize, Eq. (49) can be used to fr{§i, with the proper choice of the*” sign
outlined in the one dimensional cases. Then Eq. (40) can be used o jri#h. (41) can
be used to defin@®, and Eq. (48) can be used to fiefl. The velocity,VC, is obtained
by combining the normal velocity of the ghost fluid with the tangential velocity of the re:
fluid through the equation

Ve =VEN 4+ VR — VN, (50)
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FIG. 24. 50, 100, 200, and 400 grid cells in each direction.

whereV,} = VR . Nisthe normal velocity of the real fluid. Note that the tangent directions &
never explicitly used, so that the method is simple to implement in three spatial dimensi

7.4.1. XAMPLE 9. This example is similar to the example in Section 5.1 of [27]. Col
side a 1 msquare domain with 100 grid cells in each direction. Two circular regions
burnt gas are centered at (0.425 m, 0.425 m) and at (0.575 m, 0.575 m) with a radil
0.02 m each. The rest of the domain is defined as unburnt gas. Both the burnt gas ar
unburnt gas are defined as in Example 5, except that we=set=0 m/s in the burnt gas
as in Example 7.

In each circular region, a shock wave will form and travel outward, preaccelerating
unburnt gas similarly to the one-dimensional result calculated in Example 7. Since tl
are two circular regions, these shock waves will intersect each other and interfere
the circular growth of the burnt regions distorting their shape. Figures 18 and 19 s
the interface locations before and after merging, corresponding to 0.0008 and 0.0
respectively.

In Figs. 20 and 21 we plot square cells which are color coded based on the del
values at the cell centers. A color bar is included to the right of each figure to illustrate
discontinuous density profile at the interface. The density jumps more than 1 wighout
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the presence of spurious intermediate values due to numerical dissipation. Note tha
“white” region away from the interface is due to shock wave compressions.

7.4.2. XaMPLE 10. Consider one of the 0.02 m radius circular regions of burnt ge
from Example 9 located in the center of the computational domain at (0.5 m, 0.5 m).
order to illustrate the effects of grid refinement, calculations are carried out with 50, 1
200, and 400 grid cells in each direction. Note that the case with 50 grid cells in ez
direction is rather coarse and that large errors are already present in the initial data dt
grid representation errors as shown in Fig. 22. Compare this with Fig. 23, which shows
initial data for the case with 400 grid cells in each direction. Figure 24 shows the interf
locations for each case at a final time of 0.001 s. The calculations demonstrate first o
convergence for the location of the interface, although grid effects are apparent due in
to the poor resolution of the initial data.
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